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Discussion of the memory-function method 

P N Argyres and D G Resendest 
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA 

Received 23 September 1988, in final form 20 January 1989 

Abstract. The recently proposed memory-function method for the calculation of transport 
coefficients is discussed and criticised in the context of a simple model. In the study of the 
frequency-dependent conductivity u(w)  of this model it is shown that this method yields a 
simple result for o(0) that is, however, different from the standard result. It is then proved 
that this method commits errors, and when properly corrected it yields the standard result. 
For w # 0 this method yields an expression for u(w) that is valid only for large w ,  a result 
that can be obtained more simply from the standard formula. It is concluded that the method 
of kinetic equations is the correct and simplest way for the calculation of u(w) for all 
frequencies. 

1. Introduction 

The problem of electrical conduction in solids has been studied by a large number of 
theoretical methods [l-171. Although the techniques differ, they all require [18] the 
solution of an integral equation. In the lowest approximation for the scattering this is a 
quantum-mechanical generalisation of the Boltzmann-Bloch transport equation, first 
proposed by Bloch [19] and Nordheim [20]. The most direct and simple method that 
derives this transport equation is the method of kinetic equations [3,12,14,17]. 

Recently a new approach, the memory-function method, has been proposed [21] 
that yields the conductivity for all frequencies in terms of the memory function, which 
can be obtained explicitly by a simple perturbation expansion in the small parameter A 
such as the strength of the scattering, and thus avoids the difficulty of finding a solution 
to the integral transport equation. This method has been applied [21-231 to a number 
of similar problems. This memory-function method is expounded in § 2, where, for the 
sake of avoiding unnecessary generalisations, we consider the simple but basic model 
of independent free electrons scattered by randomly distributed centres. An explicit 
expression for the memory function and the conductivity for all frequencies in terms of 
the matrix elements of the scattering potential is obtained. 

In view of the simplicity of this method, the question naturally arises as to how this 
explicit formula for the conductivity compares with the corresponding expression of the 
standard theory [l-171, and whether it is correct. This is discussed in 8 3 for the simple 
system under consideration. It is shown that the memory-function method is not valid 
for the static case w = 0; a correct evaluation of the memory function for weak scattering 
in this case is shown to lead to an integral equation for a distribution function that is 
t Present address: Physical Sciences Inc., Research Park, PO Box 3100, Andover, MA 01810-7100, USA. 
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identical to the standard transport equation for the system. For the case o # 0 the result 
of the memory-function method is valid only for large frequencies, in which case it 
presents no particular advantage. This study thus corrects the erroneous claims [21] 
made for the memory-function rnethod. 

In a very recent work [24-261 a more sophisticated version of this approach (Mori's 
formalism) has been proposed, on the basis of which the conductivity of a quantum 
particle in a random potential, exhibiting the Anderson transition from the metallic to 
the insulating phase, was discussed. Clearly, any scheme that describes this transition 
even qualitatively is quite important. However, our study of the memory function 
presented here suggests that caution should be exercised in assuming (as this work does) 
that in the metallic regime (A + 0) the memory function is an analytic function of A .  For 
example, although this method gives the correct result up to order A 2  for the specific 
model considered in this work, this would not be the case for a more general scattering 
potential and arbitrary temperature, and thus the analytic expressions for the metallic 
regime (A + 0) would have to be re-examined. 

From this discussion and the work in Appendix 2 it becomes obvious that the method 
of kinetic equations [3,12, 141 offers a more direct and simple way for the calculation of 
the conductivity. 

2. The memory-function method 

We develop the memory-function formalism for the conductivity of the simple system 
of independent electrons in the field of randomly distributed static scattering centres, 
driven by a homogeneous electric field of frequency CL). 

Since the centres are stationary, it suffices [3,12] to consider one electron, without 
thereby ignoring the exchange effects of the electrons. Its Hamiltonian is H + F( t ) ,  
where 

1 
H = H o  + V = - p 2  + u(r - r,)  (2.1) 2m n 

is the kinetic energy and the interaction with the scattering centres {r,}, and 
F(t )  = Fe-io' + HC (2.2a) 
F = (ieE/w)u (2.2b) 

is the interaction with the electric fieldE(t) = + cc described in the vector gauge, 
with U = p/m being the component of the velocity operator in the direction of E .  The 
linear steady-state density operator satisfies the equation [2,27] (fi = 1) 

( 2 . 3 ~ )  
with the solution 

(2.3b) 
Herefo(H) = {exp[P(H - p) ]  + 1}-' is the Fermi-Dirac function for temperature T = 
l/k,P and chemical potential p ,  

is the propagator for the Liouville operator L defined by 

for any operator X ,  and o+ = o + iq with q a positive infinitesimal, where the limit 

(CL) + - L M o )  = [F ,  f o  (HI1 

P ( W >  = G(w+)[F,fo(H)I = (ieE/o)[G(w+)u,fo(H>I. 

G(z) = ( Z  - L)-' (2.4) 

LX = [ H ,  x] (2.5) 
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r]  + 0, is always implied and assumed to be taken after the thermodynamic limit. We 
obtain then the standard expression [2,3,14] for the conductivity for the vector gauge 

( 2 . 6 ~ )  
(2.6b) 

where 

(x) = Tr f o  ( H ) X  (2.8) 

and the average over the random distribution of the scatterers will be implicitly under- 
stood as part of the trace operation. The density of electrons is denoted by n and it 
determines the chemical potential p through (1) = n. (We consider a system of unit 
volume.) For a normal conductor, i.e. when a(0) = finite, we must have 

x(O+) = n/m (2.9) 

as can be seen from (2.6). An explicit demonstration of this is given in Appendix 1. 

in the form 
For the implementation of the memory-function method we begin by writing (2.6b) 

a(w) = ie2(n/m)/(w+ + M ( o + ) )  (2.10) 

introducing thereby the memory function 

M ( z )  = Z X ( Z ) / E X ( O + )  - x(z)I. (2.11) 

From this we have equivalently, 

x ( z )  = x(O+)M(z)/lz + M(z)l. (2.12) 

Thus M(O+) CC l/a(O), i.e. M(O+) is proportional to the DC resistivity of the system. It is 
clear that in the absence of scattering, i.e. for V = 0, we have G(z)u = u / z ,  and thus 
~ ( z )  = M ( z )  = 0. We wish to determine M ( z )  for all z up to O(A2), where A denotes the 
strength of the scattering interaction V ,  which is the lowest non-vanishing order. 

In the memory-function formalism one reasons [21] that, if M ( z )  has a regular 
dependence of A ,  it follows from (2.12) that 

x(o+) M ( ~ )  + o(~3) = zx(z). (2.13) 

One then rewrites ~ ( z ) ,  the velocity-velocity correlation function (2.7), in terms of the 
acceleration-acceleration correlation function 

v ( z )  = ([G(z)a,  a ] )  (2.14) 

where 

a = iLu = (Lo  + L,)u = iL,u (2.15) 

is the acceleration operator. Here we have written L = Lo + L1,  where in accordance 
with (2.5) and (2.1) 
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LOX = P o ,  XI L1X = [V,  XI. (2.16) 
The relation between ~ ( z )  and +(z)  is established by the use of the equation of motion, 
which in our notation takes the form 

(2.17) 
as follows from the definition (2.4) of G(z), in the following way. From (2.7), (2.14) and 
(2.15) we have z@) = (-i)([G(z)a, U]) and hence 

zG(z) = 1 + LG(z) = 1 + G ( t ) L  

(2.18) 
Rut since according to (2.9) ~ ( 0 ' )  = n/m, we must have from (2.18) for z = 0' that 
i([a, U]) = ([G(O+)a, a]) (see Appendix 1 for an explicit demonstration), and thus 

(2.19) 
where q ( z )  is given by (2.14). Combining (2.13) and (2.19) one obtains 

One then reaches the conclusion [21] that an evaluation of the correlation function q ( z )  
in the lowest non-vanishing order of A yields M ( z )  in the lowest order, according to 
(2.20). Since, according to (2.15), a - O(A), we have from the formal expansion of q ( z )  
in powers of A ,  

Z 2 X ( Z )  = +(z> - W ( O + > ,  

W z )  = [v+> - w(0"~ l / zx (0+~  + O(A"). (2.20) 

X 

+(z)  = A"+'"'(Z) 

v ' 2 ' ( Z )  = ([Go(z)a, a1)o (2.21) 

I 1  = 0 

that the lowest order is 

where 
GO(2) = (2 - Lo)-' (2.22) 

and ( j0  denotes the average in (2.8) but withf,(H) replaced byfo(Ho). Higher-order 
terms of q ( z )  can be easily found by using the expansion of G(z) in powers of A ,  i.e. 

X 

G(z) = Go(z> E [LIGO(Z)l" (2.23) 
n=O 

and the expansion of 
m 

f o ( H )  =fo(Ho + V )  = E A n f i n ) .  
n=O 

The memory-function method thus concludes [21] that the conductivity a(@) for all w 
is given by (2.10), with M ( w + )  evaluated to the lowest order in A as 

(2.24) 

For the system under consideration we find from (2.21), (2.15), (2.16) and (2.1) 

(2.25) 

Here V k k '  is the matrix element of V between the plane-wave states Ik) and lk'), Ik) being 
an eigenstate of Ho with eigenvalue Ek = k2/2m, u k  = pk/m = k / m  is the component of 
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u k k  = (klulk) in the direction of E ,  and the bar denotes the average over the random 
distribution of the scattering centres, so that = iZ,IUkk, l 2  with n, being the density 
of scatterers and Ukk' the matrix element of the single scattering potential U( . ) .  Thus for 
a(0) to O(A-*), the memory-function formulation gives, according to (2.10), (2.24) and 
(2.2517 

(2.26) 

(2.27) 

is the Born approximation for the transition probability rate due to the random scatterers 
and f ; ( & )  = df,(E)/d&. 

It is important to point out that this formulation yields an explicit expression for a(w) 
for all U ,  equations (2.10), (2.24) and (2.25), in terms of the matrix elements of the 
scattering potential u ( r ) .  This is in contrast to the standard method [2,14] which requires 
the solution of an integral equation. Thus, if it is correct, the memory-function method 
is of extreme practical importance for the calculation of a(@) for various scattering 
mechanisms, and for similar transport quantities for many systems. 

3. Discussion of the memory-function method 

In the ensuing discussion of this method we make the following points. First, the result 
of the memory-function formulation for the DC conductivity is different from that of the 
standard model. Secondly, we show that the memory-function method is invalid for w = 
0. Thirdly, for w = 0 it is correct only for w z ( w )  9 1, where z(w)  is the appropriate 
relaxation time, and in this case it does not present any advantage. Fourthly, we show 
how the memory function can be calculated correctly for all o including w = 0, for small 
A ,  and that then this yields a result for the DC conductivity that is identical to that of the 
standard method. 

The standard method for evaluating a(0) is that of kinetic equations [3,14]. Accord- 
ing to this, we evaluate 

a(0) = ( e / E )  Tr[up(O)] = -e2  Tr{uG(O+)[r, fo(H)]} (3.1) 
where p(0)  is the steady-state densityoperator in the scalar gauge, i.e. for F = -eEr, in 
terms of the distribution function f k ( 0 )  = p ( O ) k k ,  namely 

Here fk(0) is determined by a kinetic equation, which takes the form of a Boltzmann- 
Bloch transport equation, i.e. 

2 W k k ' [ f k ' ( o )  - f k ( O ) ]  = e E U k f 6 ( E k )  (3.3) 
k' 

with w k k t  given by (2.27) in the lowest order in /z for the scattering. (For completeness 
this is derived simply in Appendix 2.) This is an integral equation for f k ( o ) ,  which in 
general has no simple solution, and therefore a(0) from (3.2) cannot be equal to 0(0),, 
of (2.26), in spite of the fact that both expressions are of O(A-2). 
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In order to make this disagreement more perspicuous, we consider the case of 
spherically symmetric scatterers. Then (3.3) has the simple solution 

in terms of an energy-dependent relaxation time Z ( & k ) ,  where 
f k ( 0 )  = - e E U k Z ( & k ) f h ( & k )  (3.4a) 

Z ( & k ) - l  = W k k ' ( 1  - cos e , , )  (3.4b) 
k' 

and $kk' is the angle between the wavevectors k and k ' .  The conductivity is then 

a(o> = 2e2 [ - f h ( & k ) ] U 2 k Z ( & k ) ,  
k 

By contrast, (2.26) in this case becomes 

(3.5) 

which is clearly different from (3.5) even in this especially simple case. Only for com- 
pletely degenerate statistics, i.e. at T = 0 K, is a(O),, equal to o(O), since then both are 
equal to e 2 n Z ( E F ) / m  where 

We now prove that the explicit expression (2.26) for a(O),, up to O(A-*> is incorrect 
in general. We recall that this expression was derived from the exact equation (2.6b) 
and the relations (2.13) and (2.24). Relation (2.13) was obtained from the definition 
(2.12) with the recognition that M ( w + )  - O(A2). But it is wrong for U = 0, as in this case 
one would have to have lim,,o+M(2) (O')/iq 4 1; equivalently, since according to (2.9) 
~ ( 0 ' )  = n/m,  (2.13) gives (0') = 0, which is clearly absurd as it would give a(0) = 

up to O(A-2), in contradiction to (2.26). Furthermore, relation (2.24) is correct only 
if the formal expansion of q ( z )  in powers of A is valid for w = 0. We will, however, 
demonstrate below that in fact this expansion of q(0')  in powers of A involves terms of 
order A3 and higher, which diverge in the final limit q + 0,. We thus conclude that the 
memory-function method of evaluating a(@) breaks down for w = 0. 

For w # 0 both of these objections are not applicable, namely (2.13) is correct and, 
as we shall see below, there are no divergent terms in the formal expansion of y(w ' )  in 
powers of A (as q +. O + ) ,  and thus 

with M ( 2 ) ( ~ + )  given by (2.24) and (2.25), is the correct expression for the AC resistivity 
up to O(A2). This is, however, nothing more than the reciprocal of d2)(w), i.e. a(w)  
evaluated up to O(A2). Both expansions are valid for (A2/w)  4 1, or more precisely 
w ~ ( w )  8- 1, where ~ ( w )  - O(A2) is a measure of the appropriate relaxation time. But 
such a high-frequency expression for d2)(w) can be obtained simply and directly from 
formula (2.6b). If we use (2.19) to rewriteX(z) in terms of q ( z ) ,  we obtain an expression 
for d2)(w) which is clearly the reciprocal of (3.6) up to O(A2). In fact, it is worth while 
to remark that within the memory-function formalism one may use (2.13) and obtain 
IV(~)(U+) in terms of ~ ( ~ ) ( o + )  in the formal expansion of 

is the Fermi energy. 

R ( w )  = [of + M ( 2 ) ( ~ + ) ] / i e 2 ( n / m )  (3.7) 

a3 

X ( Z )  = A " X ( " ) ( Z )  

M(2) (  a+) = w + ~ ( ~ ) (  w +)/ (n /m)  = (m/n)Trfl') [Go( u + ) L 1  U ,  U] 

n=O 

in powers of A ,  namely 

instead of using (2.20) to obtain M ( 2 ) ( o + )  in terms of q,'2)(w'), as in (2.24). This is 
(3.8) 
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obviously true due to the fact that the relation (2.19) between ~ ( z )  and q ( z )  is exact and 
x = &A"x("), q = &,A"q(") are formal expansions in powers of A. The equivalence of 
(3.8) to (2.24) can of course be proved directly, if use is made of the invariance of the 
trace under cyclic permutations, the equation of motion (2.17), the relation Lof(") = 
-Llf("-l) (n + l), which follows from Lf,(H) = 0, and [H,, U] = 0. We conclude that 
for the calculation of the AC conductivity in the case of w z ( w )  + 1 the memory-function 
formulation offers no particular advantage. 

Let us now show that the formal expansion of q(w+)  = &A"V(")(w+) in powers of A 
breaks down for w = 0, and thus (2.24) is not valid for w = 0. The reason for this is the 
same as for the well known [6-91 breakdown of the formal expansion of ~(0') = 
Z:,A"x(")(w+) for w = 0, as evidenced by the fact that a(0) - O(A-2). Since the formal 
series is generated by the expansion (2.23) of G(wf),  we note that whenever Go(wf) 
operates on the part Xd of any operator X that is diagonal in (k)  we have 

(3.9a) 

and this diverges for w = 0 and in the limit q -0,. By contrast we note that for the non- 
diagonal part X,,, of X 

Go(O+)Xnd)kk' = (iq - &k + &kt)-1xkk8 ( k  # k' )  (3.9b) 

presents no divergence as q + O + ,  since in the integration over the intermediate states 
this becomes 

[-ins(&k - &k') - ( & k  - &k')pl]Xkk' 

after the thermodynamic limit is taken. The subscript p indicates the principal value. 
Thus the procedure of keeping only the term of the lowest non-vanishing order in A 

in the expansion of q(O+), or x ( O + ) ,  is invalid. Instead we must sum the infinite subset 
of terms in the expansion of q ( O ' ) ,  orX(O+), that are of the form (A2/iq)" (n  2 1). These 
are the dominant terms for sufficiently small A.  Such a procedure is equivalent to the 'A2t 
limit' technique [28] and yields, as we shall see, a DC resistivity of O(A2). Higher-order 
terms of the forms (A3/iq)", (A4/iq)", etc., can also be summed, and they give rise to the 
corrections of the DC resistivity of order A 3 ,  A 4 ,  etc. 

Similarly, for the case w # 0 but arbitrary W T ( ~ ) ,  we should sum all terms of the 
form (A2/w+)" (n  2 1). 

We now demonstrate that when this procedure is followed and M (  w') is correctly 
evaluated for small A ,  an expression for the resistivityR(w) up to O(A2), equation (3.7), 
obtains which is in full accord with the standard result obtained by the method of kinetic 
equations for all w including w = 0. In order to find the correct expression for M ( z )  for 
small A ,  we use its definition (2.11) in terms of ~ ( z ) .  The correct behaviour of x ( z )  for 
small A is obtained by identifying, in its formal expansion in powers of A ,  all terms of the 
form (A2/z)" (n 2 l), and summing them. 

In order to isolate the desired divergent terms, we introduce the projection operator 
A that projects the part X d  of any operator X that is diagonal in the lk) representation, 
i.e. 

(Ax) kk' = Xkk kk' (3.10) 

The operator that projects the non-diagonal part X,d of Xis  then A' = 1 - A .  We have 
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the obvious properties A2  = A ,  AI2 = A‘, AA‘ = A‘A = 0. The divergent terms of (see 
(2.7) and (2.23)) 

(3.11) 

now arise whenever GO(z) operates on a diagonal operator, since as we saw in ( 3 . 9 ~ )  

Go(z)A = (l/z)A (3.12) 

whereas Go(z)A’ yields regular terms. Thus, it is convenient not to use the expansion 
(2.23) of G(z) in powers of A (i.e. of L,) as indicated in (3.11), but rather to expand G(z )  
in powers of ALl. This is accomplished simply by writing 

(3.13) G(z) = ( Z  - LO - A‘L1 - AL,)-’ 

since then it follows that 
3c 

G(z) = 2 [G’(z)AL1]“G’(z) 
n = O  

(3.14) 

where 

G’(z) = ( Z  - LO - A’,!,l)-’ (3.15) 

From the structure (3.15) of G’(z) and the property (3.12) of Go(z) we note that in 
G’(z)A’ there are no divergent terms, whereas in G’(z)A there are divergent terms with 
a single (l/z) factor. By a simple rearrangement of these divergent terms can be made 
manifest by noting that 

GO(2) + Go(z)A’L,GO(z) + . . .. 

1 1  
G’(z)A = -A + -G’(Z)A’LiA 

2 2  
(3.16) 

and therefore 

AG’(z)A = (l /z)A. (3.17) 

Since now A[u,fo(H)] = 0, we have from (2.7), (2.8) and (3.14) 

x(z> = -Tr uG(z)[u,fo(H)l 
cc 

= Tr U [G’(z)ALl]nG’(~)A’[~,f~(H)] 
n = O  

2 

= - Tr U A G’(z) [A,!, A ’ G’ ( z )  A] L A ’ G’ (z) A’ [ U ,  f~ (H)] (3.18) 

where we have used the relations AG’(z)A’ = 0 and AL,G’(z) = ALIA’G’(z). Because 
of (3.16) the last expression (3.18) of ~ ( z )  can be written in the form 

(3.19) 

n=O 

~ ( z )  = -Tr U [ Z  - S(z)] - ’B(z )  

where 

S(Z) = AL,G’(z)LiA (3.20) 

B(z)  = ALlG’(Z)[U,fO(H)I (3.21) 
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The 'most divergent' terms of the form (A2/z)" are obtained by replacing in (3.20) and 
(3.21) G'(z)  by Go(z) ,  its first term in (3.15). We thus get for small A 

(3.22) ~ ( z )  = -Tr U [ Z  - S2(2)]-1B2(2)  
where 

S ~ ( Z )  = ALiGo(z)LiA (3.23) 

B2(Z) = AL,Go(z)[U,fi')I. (3.24) 
We may rewrite this in the form 

X(O') -Tr U g ( 0 )  = -2 2 Ukgkk(W) (3.25) 
k 

where g ( o )  is the solution of 

[Of - S,(o+)]g(w) = B 2 ( W + ) .  (3.26) 
This is clearly an integral equation forgkk(W). However, it is not identical to the standard 
form (3.3) for o = 0. This is due to the fact that in the description of the effect of the 
electric field in (2.26) we used the vector gauge, whereas in the standard form one 
employs the scalar gauge, i.e. one takes F = -eEr. 

We demonstrate now how the final connection with the standard result for a(w)  is 
obtained within this formalism. In (3.21) for B(z )  we note that, since 

(3.27) [ U ,  f o ( H ) ]  = izD - i(z - L ) D  
with 

D = [Y,fO(H)l (3.28) 

we have 
B(z )  = izC(z) + iS(z)D (3.29) 

where 

C( Z )  = A L 1 A ' G ' ( Z )  A ' D. (3.30) 
Using (3.29) in (3.19) we get 

~ ( z )  = -iz Tr U [ Z  - S(z)]- l[D + C(z ) ]  + i Tr uD. (3.31) 
But 

i Tr UD = i([p, r]) /m = n/m = ~ ( 0 ' ) .  (3.32) 
Thus, ~(0') is found from the expression 

~ ( w ' )  - ~ ( 0 ' )  = -iw+ Tr up(w)/(--eE) 

[o+ - S ( w + ) ] p ( w )  = (-eE)[AD + C(O+)] 

(3.33) 

(3.34) 

where p ( w )  is determined from the equation 

where S, D and C are given by (3.20), (3.28) and (3.30), respectively. The small-A 
behaviour of p ( w ) ,  and of ~ ( w ' ) ,  is then determined from 

[o' - S 2 ( w + ) ] p ( o )  = ( -eE)[A(Do + D 2 )  + C 2 ( w c ) ]  (3.35) 
where S2(w+) is given by (3.23) and 

D O  + O2 = [ r , f O ( H O )  + f ( 2 ) ]  (3.36) 

C ~ ( Z )  = ALlGo(z)A'[r,  f ' " ] .  (3.37) 
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The memory function M ( o + )  for small A is thus found from its definition (2.11) and from 
(3.23) to be 

(3.38) 

In the memory-function method then the conductivity a(w)  is obtained from (2.10) in 
terms of M ( w f )  given by (3.38), and it is 

M ( w + )  = --U+ + i(n/m)[Tr up(w>/ ( -eE)] - ' .  

a ( w )  = (e/E) Tr U p ( 0 )  = 2(e/E)  2 Ukfk(W). (3.39) 
k 

Herefk(w) = P(W)kk is the steady-state distribution function in the scalar gauge, which 
for small A is determined from (3.35). This can be seen to be the integral equation 

otfk(w> - i z W k k '  (w)[fk'(w) -fk(w>l =(-eE)[DO,kk + D2,kk  + c2(w>kkl 

where 

(3.40) 
k' 

Wkk'(CL)) = i/Vkk'/* [(U' - & k  + Ek8)-l + (U' - &k' + & k ) - l ]  (3.41) 

-t?EDo,kk = -ieEUkfh(&k) (3.42) 

and Df,kk, C2(w+)kkare the natural matrix elements of Dz  and C,(w+), as given by (3.36) 
and (3.37), the detailed nature of which are not of interest here. In particular, for w = 
0 we find that (3.40), to the lowest order in A for the inhomogeneous terms, reduces to 
(3.3) with Wkk'(0) = Wkk', and thus a(0) up to o(A-*) is obtained from (3.2) and (3.3), 
which is the standard result. More generally, for arbitrary w equation (3.40) is identical 
to the standard result, which for completeness is derived [12,14] simply in Appendix 2 
by the method of kinetic equations. 

We conclude that correct evaluation of the memory function M ( z )  for small A 
leads to the same result as the standard method, and it certainly does not avoid the 
mathematical complexities of the standard procedure of kinetic equations. This refutes 
the claims that have been made [21] for the memory-function formalism. 

We should point out that the discussion above is not complete in one important 
aspect. The important role of the averaging over the random distribution of the scattering 
centres has not been brought out. We shall forego such a discussion, as it has been given 
elsewhere [3,14,27] in connection with the standard theory of the conductivity. 

Finally, we remark that there have been other attempts [29,30] to simplify the 
calculation of the conductivity, but they have been shown [24,27] to be erroneous. In 
fact, expression (2.26) for a(0) in the memory-function formalism is identical to the 
expression for a(0) obtained by a different method [27,29] (see [27], equation (3.12); 
the extra factor of B is due to the fact that spin was ignored there), which was shown [27] 
to be in error. 

Appendix 1 

First we prove the relationX(0') = n/m, equation (2.9). Since G(O)')-'r = (iq - L)r = 
iu + iqr, we have G(O+)u = -ir and thus 

~ ( 0 ' )  = ([G(O+)u, U ] )  = -i([r, U]) = -i([r,p])/m = Trfo(H)/m = n/m. (Al . l )  

Secondly, we prove that qj(0') = i([a, U ] ) ,  a relation used in the derivation of (2.19). 
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Since G(O+)-’v = (iq - L)u ,  we get G(O+)Lu = - U .  Now, using a = iLu, equation 
(2.15), and this relation, we have 

(A1.2) 
In these formal manipulations we have tacitly assumed the existence of a scattering 

~ ( 0 ’ )  = ([G(O+)a, a]) = i([G(O+)Lu, a ] )  = i([a, U ] ) .  

potential V(r)  such that a(0) # m. 

Appendix 2 

We give here a simple derivation of the transport equation (3.40) within the formalism 
of kinetic equations. 

The steady-state density operator p ( w )  for the scalar gauge is determined by ( 2 . 3 ~ )  
with F = -eEr, i.e. 

(A2.1) (U+ - L ) p ( w )  = -eED = -eE[r, f , (H)] .  
The conductivity is then given by (3.39) as 

a(w) = ( e /E)  Tr Uf(w) = 2(e/E) 2 U k f k ( O )  (A2.2) 
k 

where now 
f ( w >  = AP(w> (A2.3) 

and A is the projection operator defined in (3.10). An equation forf(w) is obtained from 
(A2.1) by writing p ( w )  =f(o) + A ’ p ( w ) ,  substituting this in (A2.1) and operating on 
it with A and A ‘ ,  separately, to get 

(A2.4) 
(A2.5) 

(A2.6) 

(0’ - A L ) f ( w )  - A L A ’ p ( w )  = ( -&)AD 
(U+  - A ’ L ) A ’ p ( w )  - A’Lf (w)  = ( - e E ) A ’ D  

[U+  - S ( w + ) ] f ( o )  = ( - e E ) [ A D  + C(w)]  

Solving (A2.5) for A ’ p ( w )  in terms off(w) and substituting it in (A2.4), we get 

where 
S ( O + )  = AL,G’(w+)L,  (A2.7) 
C(O) = A L l  G ’ ( w + ) A ’ D  (A2.8) 

with G’(w+) given by (3.15). Here we made use of AL, = LOA, A L I A  = 0 and the 
properties of A and A ’ .  Equations (A2.6)-(A2.8) are identical to (3.34), (3.20) and 
(3.30), which were derived by a more involved procedure, and constitute the general 
kinetic equation for f ( w )  for all w and A ,  and it is clearly an integral equation for the 
distribution function f k ( @ )  = (k/  f ( w ) / k ) .  

For completeness the operator A should include the averaging over the random 
distribution of the scatterers. For additional discussion of the importance of this point 
see [3, 14,271. 

For small A the distribution functionfk(w) is determined from (A2.6) with its coef- 
ficients S ,  D ,  Cevaluated up to O(A2). This is easily seen to be equations (3.40)-(3.42). 
For w = 0 the distribution functionfk(0) up to the leading order in A is then found to be 
given by the kinetic equation (3.3), with (2.27). 

Note that the expansion of G’(w+) in powers of A ,  as given in (3.15), which generates 
the power series expansion of S ( o )  and C(w),  does not introduce the divergent terms 
(for w = 0) that we discussed in 9 3. 
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